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Synopsis

Equations describing transient diffusion in ternary laminate slabs are presented. The equations
developed can be applied to: (I) asymmetric ABC slabs separating two semi-infinite baths, each
bath containing either the same or different concentration(s) of permeant; (I) asymmetric ABC
slabs separating a semi-infinite bath from an impermeable substrate; (III) asymmetric ABC slabs
with impermeable substrates attached to laminas A and C. Further, the equations can be applied
to slabs containing initially uniform, but not necessarily equilibrial, concentrations of permeant
in each lamina. Some numerical examples of the aforementioned diffusion systems I and II are
discussed.

INTRODUCTION

Equations have been obtained for diffusion from a well-stirred semi-infinite
bath into a homogeneous slab.! Spencer and Barrie have expanded this work
to include symmetric ABA and asymmetric AB laminate slabs,? and recently an
asymmetric ABC laminate slab.3> However, the initial conditions imposed upon
the last-mentioned system were rather restrictive in that the individual laminas
were considered to be initially in equilibrium with each other. In addition, the
slab separated two semi-infinite baths, each bath containing the same concen-
tration of diffusant. This paper extends the work of Spencer and Barrie to in-
clude more general initial and boundary conditions. Furthermore, modification
of the distance coordinate results in the derivation of equations which are easier

“to use.

DIFFUSION EQUATIONS

Definitions, Assumptions, and General Diffusion Equations

The membrane is a slab comprising three laminas, lamina 1 of thickness [/,
lamina 2 of thickness I — I1, and lamina 3 of thickness [3 — l5. A schematic
representation of the ternary laminate slab is shown in Figure 1. The concen-
trations in each lamina at ¢ = 0 are uniform; C? in lamina 1, C} in lamina 2, and

£ in lamina 3.

It is assumed that equilibrium is maintained at the phase interfaces when ¢
> 0. Further, it is assumed that the solubility follows Henry’s law in each lamina,
sothat whent > 0,C; = K19Csatx =y and Co = Ko3Czat x = lg, where K15 and
K3 are constants. Another useful quantity, as will become apparent is K13 =
K3Ks;3. The diffusion coefficients in the laminas, D{, Ds, and D3 are con-
stant.
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Fig. 1. Schematic representation of the ternary laminate slab at t = 0. Quantity Cj, is the satu-
ration concentration of diffusant in layer n(n = 1,2,3) which is in equilibrium with pure diffusant.
In general the ratios C}/C3, C5/C%, and C4/C% are different and may lie anywhere between 0 and
1. )

Spencer and Barrie? have considered a case of a ternary laminate slab in which

L= KoCh, Ch = KosCh and C} = K13C5.  However, it is useful to have solutions
for C} = K15Ch, Ch = KosCh, and C% = K;3C5, i.e., nonequilibrial initial con-
centrations of permeant. In this paper it will be assumed that the laminas, in
general, are not initially in equilibrium with each other, but the derived solutions
to the general diffusion equations can also cope with equilibrial or mixed equil-
ibrial/nonequilibrial initial conditions.

When the ternary slabs are exposed to the semi-infinite baths (systems I and
11 to be considered) at ¢ = 0, the exposed surfaces are assumed to be in equilib-
rium with their respective contact baths.
The differential equations describing transient diffusion are

02C, 1 oC,
S g o< <]
axz D1 ot ¥ !
2
a_g_z. = LQQ’ ll <x < 12
ax2 D2 ot
3203 1 6C3
— == lo <x <l 1
ox? Dy ot 2EESE W
The following dimensionless parameters are defined:
d12 = (D1/D9)V2 093 = (D2/D3)V3; 013 = (D1/D3)'/?
A2 =11/(ls — 1h); Aoz = (la = 11)/ (I3 — lo); Az =1L/(3— 1)
& =x/ly £ =(a—x)/(a— 1) £3 =(Us—x)/(ls—la)

T =D1t/l%
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Equations (1) can be written in a semidimensionless form. Concentration is not
made dimensionless for reasons which will become apparent. Thus

22C, oC,
— ="l 0<¥§<1
282 o7 &
22Cy 6% dCo
—2- 222 15650 2
agg }\%2 or 52 ( )
d2C3 6%, 0C
g 1>£>0

282 AL o1’

The Laplace transformation method* provides the solution to egs. (2), subject
to the appropriate boundary and initial conditions. The application of the
Laplace transform technique to systems I, II, and III is outlined in the Ap-
pendix.

System I. Asymmetric ABC Slab Separating Two Semi-Infinite Baths,
Each Bath Containing Different Concentrations of Diffusant

The initial and boundary conditions for this sytem are

Cs = Ci, 1= £3>0, T
Co = Ch, 12620, T
C.:=0Ci 0<§<1, T

0

0 3)
0

where, in general, C} = K12Ch, Ch = Ko3Ch, Ci = K13Ck;

C3 = Cg, £3 = 07

720
4
Ci=C}, &=0, 7120 )

where CY and C§ are the constant concentrations in the two membrane surfaces
which are in equilibrium with the two semi-infinite contact baths; in general Y
s K13C3, i.e., the concentrations of diffusant in the two baths are different;

(Che=1= Ki12(Ca)gy=1, (Cogy=0 = Ko3(C3)gy=1, >0 (5)

02, (acl) (aCz) 6%, (DCZ) (6C3)
LY [y % (0% (%% 50 (6
A2 \d&1/a=1 \d&s)e=1, Aoz \0&2)e=0 \0&s/es=1 7 ©

The Laplace transform method gives the solutions

= A, sin[(§;3/M13)am €3] exp(—ad,7)

C3=X(&)+ X (M
m=1 Rm
Co= Y(E) + i;l {B, cos[(812/M2)améa] + EmRSin[(512/>\12)am52]} exp(—a5,7)
(8)
= Fpsin(amnéy) - exp(—ab,7) ©)

Ci=Z()+ mZ=1 R

where the «,, are the positive roots of an auxiliary equation determined by the
boundary conditions.
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These solutions are presented in Table I, with

0 )
Ala,,) = 619K 15 cosa,, sin (ﬁ am) + sina,, cos 12 Om (10)
A1z A2
. : ) I
Qam) = 012K 12 sinay, cos (—12 am) + cosam sin [ ap, (11)
A2 A2
o) = 019K 19 cosa,y, €os (6—12' am) — sina,, sin 12 Om (12)
12 . A1z
)
V(am) = cosayy, cos (——12 am) — 012K 19 sina,, sin 12 Om (13)
Aiz A1z

In egs. (7)-(9) X(&3), Y(£2), and Z(£;) are the concentrations, respectively, in
layers 3,2,and 1 as ¢t (or 7) — =,

It is useful to be able to calculate the average concentration of diffusant in any
layer at time ¢ (or dimensionless time 7). Defining the average concentration
in layer n(n = 1,2,3) as C}, it is easily shown that

cin = | L ol dEn (14)

from which
(1/2)0(K15C3 - CY)
1+ 65K 12/ M2+ 633K13/M13
= Fn[l — cosany,] exp(—aZ 1)

Ci(r) =CY +

+ X (15)
m=1 amBp,
C3r) = (63./2012)(CY — K13C9) + K23C3(1 + 63K 12/ A 12) + (K2303a/ M 13)CY
2 1+ 63K 12/ 12 + 633K 13/ M3
[Bm sin 12 am) +E, [1 — cos (@ am) } exp(—a?,7)
+ Az & Ar2 A1g (16)
512 m=1 amBm
. (6%/2M\13)(CY — K13C9)
Ci(r) =C8+
a(7) 571+ 63K19/ M2 + 62K 13/ \1s
+ Az i Anf 1 — cos[(815/M3)om]} exp(—aZ7) a7
613 m=1 amRm

Equations (7)-(9) and (15)—(17) are very complicated. However, with simpler
initial conditions, the solutions also become simpler. Consider the case C} =
K15Cy, Ch = Ky3Ch Then R, X(£3), Y(£2), Z(£1), and the auxiliary equation
remain the same, but

013

Ala,,) sin (L am)

Ap = 0613(CY— CY + (CL — Ch) 5
13

— 893K 93 E(am) cos (ﬁé am)]
)\13

B, = Ko3(C§ — CQ)A(am) + 813K 23(CY — C¥) sin [(813/M13) ]
E., = 0612(CY — C) cos[(813/A13) am] — K23(C§ — CHE(am)
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Frn = K13(C§ — C%) + (C) = CY) |623K 232(atr) sin ()\_ Oém)
13

— ¥ (o) cos ()\—13 am)]

Now consider the case Ci = K12C%, Cb = Ko3C}, and C = K13C%. The last-
mentioned condition is tantamount to specifying similar concentrations of dif-
fusant in the two semi-infinite baths. Thus

X(&5) = CY; A, = 013K13(C§ — Ch) + (C§— Ch)

X |A(ap,) sin (— am) — 093K 93= () cOS (% am)
A3

Y(£9) = KosC% B = K3(C§ — CHA(am) .
‘ + 013K 13K 23(C3 — C%) sin[(813/M13) otm]

m = 612K13(C8 - C?,) COS[(513/>\13)01m] :
— K3(C§ = CHE(am)
Z(&) =CY; F,, = K13(C§ — C%) + K13(C§ ~ C%)

X 693K 2382(cts ) sin (é—— am) V¥ (w,,) cos (i—am)]

M3 A1z
With the above coefficients A,,, Bm, Em, and F,,,, and values of X (&3), Y(£&3), and
Z(£,1) we have a solution equivalent to that obtained by Spencer and Barrie,?
except that the new equations are somewhat more tractable. It can be seen that
the term (C3 — C%) turns up in Ap,, By, En, and F,,.  Thus in this instance the
solutions can be made dimensionless by dividing both sides of egs. (7)—(9) by (C3
— C%). However, in the more general case elaborated in Table I there is no ob-
vious choice of dimensionless concentration, so that the reason for rendering the
diffusion equations into the semidimensionless egs. (2) becomes obvious.

System II: Asymmetric ABC Slabs Separating a Semi-Infinite Bath from
an Impermeable Substrate

This system is equivalent to a free symmetrical ABCBA laminate slab sepa-
rating two semi-infinite baths, each bath containing the same concentration of
diffusant. The initial conditions are given by eqs. (3). Boundary conditions
(5) and (6) are retained, but boundary conditions (4) are modified to

C3=C3, =0, >
3 3 _ & - 720 (18)
0C1/0&; =0, £ =0, 720
The Laplace transform method gives the solutions
« 1 . —[2
C3 = Cg + Gm Sln[(513/xl3)ﬁm$3] exp( ﬁmT) (19)
m=1 Sm
Cy = K23C3
" Z {Hy, cos[(812/A\12)BmE2) + My sin [(812/M12)Bm o]} exp(—BrT 20)

Sm
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C1=KuCl+ S N cos(Bmé&1) - exp(=57)

m=1 Sm

(2D

where 3, are the positive roots of an auxiliary equation determined by the
boundary conditions. The solutions to the diffusion equations are presented
in Table II. The quantities A(83,,) etc., are defined by egs. (10)-(13) with «,,
replaced by 8.

In eqgs. (19)-(21) C3Y, K23C3, and K;3C§ are the concentrations, respectively,
in layers 3, 2, and 1 as t(or 7) — .

Using eq. (14) the average concentrations in each layer are found to be

© Ny, sinB, - exp(—f%7)

Ci(7) = K13C§ + m2=1 5.5, (22)
C3(7) = Ko3C$
{Hm sin (53-13 Bm) + Mp, [1 — cos (@ 5m)]} exp(—B7,7)
+ﬁ i A1z A1z (23)
512 m=1 ;8,,,S,,,
Cy(r) = CY +L1§ i Gmil — cos [813/M\13)Bm]} exp(—B5.7) 24)
. 013 m=1 BmSm :

Consider the case C} = K15C5, C = K53C}, which has recently been solved by
Spencer and Barrie.> Then the coefficients G,,, H,,, M., and N,,, are simplified
to

Gm = (C§— CY) [\I/(Bm) sin (% i8m) + 023K 23Q(8r) cos ﬁéﬁm)}
A13 Ais
Hp, = Kg3(C§ ~ CH¥(B)
M, = K23(C(3) - CQ)Q(,Bm)
Nm = K13(C3 — C%)
Substituting these values of G, etc., into egs. (19)—(21), and dividing both sides

of the resulting equations by (C§ — C%), leads to entirely dimensionless expres-
sions.

System III: Asymmetric ABC Slabs with Impermeable Substrates
Attached to Laminas A and C

The initial conditions are given by eqgs. (3). Boundary conditions (5) and (6)
are retained, but boundary conditions (4) are modified to

aC3/a$3 = 0, 53 = 0, 720

25
2C1/0%, =0, &£ =0, 720 (25)

The Laplace transform method gives the solutions
Cy = Ci+ Chaz + Cidss + i P, cos[(813/M13)Ym &3] - exp(—vE47) (26)

T 1+ MgsKaz + MsKiz  mz1 T
= K23(Ch + Chhoz + Cilys)
1+ Ao3Kos + MsKs

”Qm cos (5_12‘ 'YmEZ) + Uy, sin (_512_ 'YmEZ)] . eXp(—‘Y?nT)] (Tr)™ ! (2D
AIZ AIZ

C2

+

s

1
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C, = K13(C4 + Chhgs + Cilig) + i Vin cos(Ymé1) - exp(—Yh7)

1+ Ao3Kog + A13K13) m=1 Tn

where the y,, are the positive roots of an auxiliary equation determined by the

boundary conditions. The solutions to the diffusion equations are presented

in Table ITI. The A(vy,,), etc., are defined by eqgs. (10)-(13) with «,, replaced
by Ym.

In egs. (26)-(28) the terms on the right hand sides of the equations outside
the summation signs represent the concentrations, respectively, in layers 3, 2,
and 1 as t{or 7) — <.

Using eq. (14) the average concentrations in each layer are found to be

K13(Ch + Chhgs + Cidgs) + i Vi sinYp, - exp(—y54,7)
1+ Ag3Kos + Ai3Ki3) m=1 YmTm
Ko3(Ch + Chhas + Ciis)

(28)

Ci(r) = (29)

Ci(r) =
2(7) 1+ AgsKog + A13K13
Aig & . (012 012 -1
+ 2 Y [{@Qnm sin {T2 Y| + Un [1 = cos [T Ym||{ exp(=7Y27)| (YmTm)™
012 m=1 A12 A2
(30)
. Ci+ Chhog + Cikis | Ais
= + —_—
Cg(T) 1+ >\23K23 + )\13K13 51
. % i P, sin [(813/M13)Ym] exp(=v27) 31)

YmTm

NUMERICAL EXAMPLES OF DIFFUSION IN TERNARY
LAMINATE SLABS

The main use for the solutions presented in this paper is in predicting con-
centration profiles in ternary laminate slabs, knowing values of 6 and K.

.One case which requires knowledge of transient diffusion in multilaminate
slabs is that of power cables without metallic sheaths. The diffusant of interest
frequently is water, but transfer of plasticizers may also be of concern. Cable
geometry is, of course, essentially cylindrical, but there are several reasons for
using a plane slab as an approximation.

First, in many high-voltage power cables the thicknesses of the polymeric layers
are small in relation to the radius of the conductor. When this is so the series
solutions for cylindrical coordinates converge very slowly.

Secondly, solutions for annuli are very complicated. The binary laminate
annulus yields solutions® which are equivalent in complexity to those for the
ternary laminate slab. Solutions for the ternary laminate annulus are so com-
plicated as to be of little practical use.

Thirdly, diffusion data and the assumptions, e.g., the constancy of diffusion
coefficients and the applicability of Henry’s law, are rarely accurate, so that the
plane slab approximation to the annulus is acceptable, if the objective is simply
to obtain an order-of-magnitude estimate of concentration at a particular
time.

We will now consider three particular instances in which water is the diffusant.
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TABLE IV
Values of D, C, and [ used in Examples (T = 25°C)
Layer D, (cm?/s) C3(g/cm?) Length(cm)
1 52X 1079 9.2 X 1075 L=05
2 8.4 X 1079 2X 1073 lo—-1,=03
3 3.5X 1078 2% 10-3 I3—1=0.3

The composite slab comprises an outer plasticized poly(vinyl chloride) (PVC)
sheath (layer 3), an intermediate layer based on unvulcanized butyl rubber (layer
2) and a low-density polyethylene insulation (layer 1). The PVC sheath is
contacted with a semi-infinite bath of pure water. The data used for the fol-
lowing examples are presented in Table IV. Diffusion coefficients and saturation
concentrations for PVC and unvulcanized butyl rubber were determined ex-
perimentally by the author. Literature values for the diffusion coefficient of
water in low-density polyethylene vary enormously. A low diffusion coefficient
was deliberately selected as representing the most optimistic value, water being
considered detrimental to the electrical integrity of the insulation. It should
be realised, however, that the main purpose of the exercise is to demonstrate the
applicability of the diffusion equation solutions.

Example 1

For the first example we will consider System II with all three laminas initially
free of diffusant. In addition C} = C4 = C4 = 0 and C3 = C$, where the super-
script s denotes saturation with diffusant. This is a specific case of a more
general solution obtained by Spencer and Barrie.5

With the above-mentioned restrictions, application of egs. (19)-(21) and Table
II gives

{ Y (B,) sin (i—llz 5m)

+ 023K 23081, ) cos (él—'? Bm)] sin (_;5\_1; Bmfa) exp(—Bm 27)] (Sm)™1 (32)
13

Ais
Co—C3_ 2 O12
s mZ=1 { ¥ (Bm) cos (>\12 6m£2)

2

+ Q(Bm) sin (% Bm&)] exp(—Lm 27)} (Sm)™t  (33)
12

C1—Ci_ = cos(Bm&1) - exp(—Ln 1)
Csl m=1 Sm
with the 3,, being the nonzero positive roots of the auxiliary equation presented
in Table II. It will be seen that the above equations are entirely dimensionless.
Similar solutions in nondimensionless form were obtained by Le Poidevin.”
Using the data of Table IV the first four roots of the auxiliary equation were
found to be 31 = 1.528, B85 = 2.660, 83 = 4.718 and 84 = 6.715. With this infor-
mation the concentration profile at 3000 h was computed and the result is shown
in Figure 2.

(34)
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Fig. 2. Concentration profiles at 3000 h for examples 1, 2, and 3.

Example 2

For the second example we will consider System II with laminas 2 and 3 ini-
tially free of diffusant, but lamina 1 saturated with diffusant. This situation
sometimes arises in power cables when the extruded polyethylene insulation is
crosslinked, and is saturated (or supersaturated) with water either from the steam
heat transfer medium or as the result of the decomposition of the chemical
crosslinking agent. We will assume that the insulation is crosslinked in an inert
gas heat transfer medium, and that the resultant extrudate has the same diffusion
properties as uncrosslinked low-density polyethylene and is initially saturated
with water.

We use eqs. (19)-(21) and Table II, together with the restrictions C4 = C} =
0, Ci = C3, and C? = Cj, to obtain

Cs=C5_ {[wm) sin (@ Bm) + 535K 20(Bn) cos (@ 6m)
C3 m Ais A3

Ms

1

— 013K13 sinﬁm] sin (%Z 5mf3) . eXp(“ﬁ?nT)] (Sn)~t (35)
1
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C:=C3 _
C§ = m— (“\I’(ﬁm) 613K13 Sln'Bm sin (AIS 6m)] (Mz BmEZ)
; [Q(Bm) _ b13K1a sinfm cos (;3 Bm)] (A ﬁmsz)] exp(—B?nr) (Sm) 1
13 12
(36)
G-Ci_¢ . 012 . {013 _ 012
ci ,EIHI + 025Ks sin (Au 8 ’") st (Alg 8 ’") (Alz 8 ’")

X cos (-f:ﬁ Bm)] cos(Br&1) exp(—ﬁ?nr)] (Sm)™1 (37)
13

with the 3,, again being the nonzero positive roots of the auxiliary equation
presented in Table II.

10
12000h /
0.9+
6000h
084
0.7
@ (=
O
L
S 1500h
0.6+
054
041
n=1 n=2 n=3
0-3 1 \J — 1 L)
0 02 04 06 08 10 13

x {cm)
Fig. 3. Concentration profiles at various times for example 2.

The concentration profile at 3000 h is shown in Figure 2 and may be compared
with those of examples 1 and 3. Figure 3 shows the concentration profiles for
example 2 at various times. As might be expected at low times there is a mini-
mum in the concentration. This minimum moves towards x = 0 (the boundary
with the impermeable substrate) as time goes by. Between 3000 h and 6000 h
the minimum reaches x = 0, and remains at x = 0 thereafter. This is sensible
because, as mentioned earlier, this laminate slab can be considered as one half
of a symmetrical ABCBA slab which separates two semi-infinite baths, each bath
having in it the same concentration of diffusant, in these examples both baths
containing liquid water.
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Example 3

We will now consider an example of System I. In the context of water diffusion
in a power cable this situation could arise if the-conductor is stranded, thus
permitting the movement of liquid water along the conductor and consequently
diffusion into the laminate from the insulation side as well as from outside the
sheath.

Let us consider the restrictions C4 = C5 =0, Ci = C3, C3 = C3, and-C? = K5CY,
The last-mentioned restriction applies because the concentratlon of diffusant
in the two “baths” is the same. Thus from egs. (7)-(10) and Table I it can be
shown that

Ca= C3 i “513K13 costpy, + Alap,) sin (6—— am)
C3 m=1 }\13 .
6 6# ] % 2 -1
— 823K23 E(a) cos s S om&s| - exp(—an7)i (Rm)™1 (38)
= —902 =5 ({ Alam) + 813K 13 cosam sin (ﬁ am) cos (6 A s )
C3 m=1 _ ST A1z
+ (012K 12 cosan, cos (— am) — F(an)| sin (6 am£2)} exp(-a?nr) (Ry)1
A13 Ao
(39)
G-G_ ¢ in (012 )(é;s )
Ci mZ=:1 Hl + 023K 23 sin (}\12 Oty | sin e U

e
— cos o, | cos Om

s s sin(amér) eXp(—Ol?nT)] Bn)™' (40)

with the a,, being the nonzero positive roots of the auxiliary equation presented
in Table L.

Using the data of Table IV the first four roots of the auxiliary equation were
found to be a1 = 2.547, a5 = 3.232, a3 = 6.216, and oy = 6.798.

Figure 4 shows the concentration profiles for example 3 at various times. As
was the case with example 2 there is a minimum in the concentration at moderate
times. This minimum moves in the direction of x = 0 as time goes by. The
minimum, however, never appears at x = 0, because the boundary condition
9C1/dx =0, at x = 0, does not apply in this example. Ast (or 7) becomes large
the minimum approaches its final position within the ternary laminate slab. In
the particular case of the Table IV data the minimum ends up in layer 1. The
location of the minimum at large times is found by setting 8C{/0&; = 0 and
considering only the first term of the infinite series of eq. (40), since second and
subsequent terms can be neglected.

Thus
%(;:1 = [oqul [1 + 093K 23 sin (%z o ) sin (%i al)

— €os (@ al) cos (% al)] cos(a1&1) exp(—a%r)} (R)1'=0
A2 A13
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Fig. 4. Concentration profiles at various times for example 3.

The exponential term is small, but nonzero. Thus to find the position of the
minimum at large £ (or 7) it is necessary to solve the equation

cos(a1éy) =0
for the first nonzero value of £;. Hence we need to find &; from

o1& = Yo (41)

From eq. (41) it is found that £; = 0.617 or x = 0.309 cm. As Figure 4 shows,
the minimum does indeed reach its final resting place at this position. Note that
if the first nonzero value of £; from eq. (41) had been greater than unity, it would
have implied that the minimum was in layer 2 or 3. It would have been necessary
to apply the same procedure of truncation, differentiation, and setting to zero
to C5 and C3 until either 0 < £, <1 or 0 < £3 < 1 had beén found.

Finally, Figure 2 shows the concentration profile at 3000 h for example 3, along
with examples 1 and 2. This figure provides a useful check for the correctness
of some of the complicated solutions that have been presented in this paper. For
instance, it will be seen that the concentration profiles in layers 2 and 3 are vir-
tually identical for examples 2 and 3, even though the solutions to the diffusion
equations are very different, as are the set of roots «,, and 8,,,m = 1,2, 3,4. The
reason for the similarity is that the permeability coefficient (defined in general
as P, = D, C3) of the layer 1 is much lower than those of layers 2 and 3. Thus
for moderate times at least, the concentration profiles in layers 2 and 3 could have
been obtained with a fairly high degree of accuracy by discarding layer 1 and
considering an impermeable substrate attached to layer 2 at x = [;. However,
although layer 1 has very little influence on the concentration profiles in layers
2 and 3, what happens inside layer 1 is important.
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APPENDIX: APPLICATION OF THE LAPLACE TRANSFORM
METHOD

The Laplace transform method of solving the diffusion (or heat conduction) equations is treated
in detail by Carslaw and Jaeger.* However, because the coordinate system used in this paper is novel,
the derivations of solutions to the diffusion equations are briefly outlined.

The Laplace transforms of the partial differential equation set (2), subject to the initial conditions
(3), are

d*C,

T -pCy = =Ci, 0<E <1

1

d2Cs 8% — Y

—= — = pCs = — —Ci, 1>6>0 (Al)
gy M N ?

d?2C; & = &3

aEs N T TN 1>&>0

where p is the variable of the Laplace transform C, (p) of C, (7).

System I
The boundary conditions when transformed become
Cy=Ci/p, £=0 Ci=C{p, &=0 (A2)
(Chg=1 = K12(Cadgp=15 (Co)gp=0 = K23(Cs)gy=1 (A3)
LB () e "
Mo \dEfa=1 \d&s)e=1 Aoz \dEglee=0 \d&s/ea=1
Solutions of eq. (A1) which satisfy eqs. (A2)-(A4) are

513.

0 _ (i i
Cy= Gi=Ch cosh (— q£3) + At sinh (éﬂ qf;;) + G
p A13 P

81
T, = Bt cosh (ﬁ qu) + Etsinh
Are

8 o
EQ&)) +=2
A2 p

Co - i i
C, =2 Ch cosh(g&y) + Ffsinh(géy) + Q
b p

where ¢ = p1/2,
The factors Af, B, Ef, and F are found from egs. (A3) and (A4).

System II

Boundary conditions (A3) and (A4) are retained, but condition (A2) is replaced by
C;=CYp, &=0 dCi/dt =0, £=0 (A5)
Solutions of eq. (A1) which satisfy eqs. (A3)-(A5) are

0 _ (i . ) i
Cy= Cs = C cosh (ﬁi qf;;) + G*sinh (Eq&,) + G
A3 A13 D

Cy=H' cosh{(d12/M12)g&s] + Mt sinh[(610/A12)9£2]) + Ch/p
C; =Nt cosh(g§) + Ci/p

The factors Gt, Ht, M1, and Nt are found from egs. (A3) and (A4).
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System II1

Boundary conditions eqs. (A3) and (A4) are retained, but eq. (A5) is replaced by
Z—2=0! £3=0; ((ii_i:=0, gl=0 (AG)
Solutions of egs. (A1) which satisfy egs. (A3), (A4), and (A6) are
C3 =Pt cosh [(813/\1s)gés] + Ci/p
Co=Q" cosh [(812/A12)géa] + Ut sinh[(8;,0/A12)gE9] + Ch/p
C, =Vt coshigéy) + Ci/p

The factors Pt, @1, U1, and V1 are found from eqs. (A3) and (A4)
To evalute C1(7), Co(7), and Cs(7) for systems I, IT and III, the Inversion theorem is used. All
systems have simple poles at p = 0. The other poles for systems I, I, and III, lie, respectively, at
= 2 g2 a2
P = =y, m» and Ym:
The author gratefully acknowledges the permission of the Director of Research of the Electricity
Council to publish this work.
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