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Synopsis 

Equations describing transient diffusion in ternary laminate slabs are presented. The equations 
developed can be applied to: (I) asymmetric ABC slabs separating two semi-infinite baths, each 
bath containing either the same or different concentration(s) of permeant; (11) asymmetric ABC 
slabs separating a semi-infinite bath from an impermeable substrate; (111) asymmetric ABC slabs 
with impermeable substrates attached to laminas A and C. Further, the equations can be applied 
to slabs containing initially uniform, but not necessarily equilibrial, concentrations of permeant 
in each lamina. Some numerical examples of the aforementioned diffusion systems I and I1 are 
discussed. 

INTRODUCTION 

Equations have been obtained for diffusion from a well-stirred semi-infinite 
bath into a homogeneous s1ab.l Spencer and Barrie have expanded this work 
to include symmetric ABA and asymmetric AB laminate slabs: and recently an 
asymmetric ABC laminate slab.3 However, the initial conditions imposed upon 
the last-mentioned system were rather restrictive in that the individual laminas 
were considered to be initially in equilibrium with each other. In addition, the 
slab separated two semi-infinite baths, each bath containing the same concen- 
tration of diffusant. This paper extends the work of Spencer and Barrie to in- 
clude more general initial and boundary conditions. Furthermore, modification 
of the distance coordinate results in the derivation of equations which are easier 
to use. 

DIFFUSION EQUATIONS 

Definitions, Assumptions, and General Diffusion Equations 

The membrane is a slab comprising three laminas, lamina 1 of thickness 11, 

lamina 2 of thickness 12 - 11, and lamina 3 of thickness l3  - 12. A schematic 
representation of the ternary laminate slab is shown in Figure 1. The concen- 
trations in each lamina at  t = 0 are uniform; Ci  in lamina 1, C i  in lamina 2, and 
C$ in lamina 3. 

It is assumed that equilibrium is maintained at  the phase interfaces when t 
> 0. Further, it is assumed that the solubility follows Henry’s law in each lamina, 
so that when t > 0, C1= K12C2 a t  x = l 1  and C2 = K23C3 at x = 12, where K12 and 
K23 are constants. Another useful quantity, as will become apparent is K13 = 
K12K23. The diffusion coefficients in the laminas, D1, D2, and 0 3  are con- 
stant. 
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Fig. 1. Schematic representation of the ternary laminate slab at t = 0. Quantity C; is the satu- 
ration concentration of diffusant in layer n(n  = 1,2,3) which is in equilibrium with pure dif'fusant. 
In general the ratios Cl,/Cj, Ci,/C;, and C$/Cs are different and may lie anywhere between 0 and 
1. 

Spencer and Barrie3 have considered a case of a ternary laminate slab in which 
Ci = K&$, C$ = K23Cj, and Ci = K13Ci. However, it is useful to have solutions 
for Ci  # KlZC',, C', # K23Ci, and Ci  # K13C;, i.e., nonequilibrial initial con- 
centrations of permeant. In this paper i t  will be assumed that the laminas, in 
general, are not initially in equilibrium with each other, but the derived solutions 
to the general diffusion equations can also cope with equilibria1 or mixed equil- 
ibrialhonequilibrial initial conditions. 

When the ternary slabs are exposed to the semi-infinite baths (systems I and 
I1 to be considered) at t b 0, the exposed surfaces are assumed to be in equilib- 
rium with their respective contact baths. 
The differential equations describing transient diffusion are 

The following dimensionless parameters are defined: 
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Equations (1) can be written in a semidimensionless form. Concentration is not 
made dimensionless for reasons which will become apparent. Thus 

The Laplace transformation method4 provides the solution to eqs. (2), subject 
to the appropriate boundary and initial conditions. The application of the 
Laplace transform technique to systems I, 11, and I11 is outlined in the Ap- 
pendix. 

System I: Asymmetric ABC Slab Separating Two Semi-Infinite Baths ,  
Each Bath  Containing Different Concentrations o f  Dif fusant  

The initial and boundary conditions for this sytem are 

c3= c;, 1 2  4'3>0, 7 = o  
c2= c;, 124 '220,  7 = 0  
c1= ci, 0 < 4 ' 1 d l ,  7 = 0  

c3=c30, 4 3 = 0 ,  7-20 
c1=c:, [1=0,  7 > , 0  

where, in general, C i  # KlzC',, C; # K23C$, Ci  # K13C;; 

(3) 

(4) 

where Cy and C$ are the constant concentrations in the two membrane surfaces 
which are in equilibrium with the two semi-infinite contact baths; in general Cy 
# i.e., the concentrations of diffusant in the two baths are different; 

(cl)(l=l = K12(C2)(2=1, (c2),2=0 = K23(C3)(3=17 7- > 0 (5) 

The Laplace transform method gives the solutions 

where the am are the positive roots of an auxiliary equation determined by the 
boundary conditions. 
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These solutions are presented in Table I, with 

In eqs. (7149) X(&J, Y(&), and Z(E1) are the concentrations, respectively, in 
layers 3,2, and 1 as t (or 7) - m. 

It is useful to be able to calculate the average concentration of diffusant in any 
layer at  time t (or dimensionless time 7). Defining the average concentration 
in layer n(n = 1,2,3) as Ci,  it is easily shown that 

from which 

(17) 

Equations (7)-(9) and (15)-(17) are very complicated. However, with simpler 
initial conditions, the solutions also become simpler. Consider the case Cl, = 
KlzC;, C', = K23Ci,. Then R,, X(&), Y(E2), Z(&), and the auxiliary equation 
remain the same, but 

X i 3  +- c A m (  1 - cos[(WA13)amI) exp(-a:7) 
amRm 613 m = l  
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F ,  = K13(C! - Cf3) + (Cy - Ci) 623K23Q2(am) sin 

Now consider the case Ci = K12Ci, Ci = K23Cf3, and Cp = K13Cg. The last- 
mentioned condition is tantamount to specifying similar concentrations of dif- 
fusant in the two semi-infinite baths. Thus 

X ( t 3 )  = Cg; A ,  = 613K13(c! - CB) + (Cp - Cf3) 

With the above coefficients A,, B,, Em, and F,, and values of X&), Y(&), and 
Z(t1) we have a solution equivalent to that obtained by Spencer and B ~ r r i e , ~  
except that the new equations are somewhat more tractable. It can be seen that 
the term (C! - Cf3) turns up in A,, B,, Em, and F,. Thus in this instance the 
solutions can be made dimensionless by dividing both sides of eqs. (7)-(9) by ((2,” 
- C$). However, in the more general case elaborated in Table I there is no ob- 
vious choice of dimensionless concentration, so that the reason for rendering the 
diffusion equations into the semidimensionless eqs. (2) becomes obvious. 

System 11: Asymmetric ABC Slabs Separating a Semi-Infinite Bath from 
an Impermeable Substrate 

This system is equivalent to a free symmetrical ABCBA laminate slab sepa- 
rating two semi-infinite baths, each bath containing the same concentration of 
diffusant. The initial conditions are given by eqs. (3). Boundary conditions 
(5) and (6) are retained, but boundary conditions (4) are modified to 

The Laplace transform method gives the solutions 
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(21) 

where Pm are the positive roots of an auxiliary equation determined by the 
boundary conditions. The solutions to the diffusion equations are presented 
in Table 11. The quantities A(&) etc., are defined by eqs. (10)-(13) with am 
replaced by Om. 

In eqs. (19)-(21) C,", K23Cg, and K13Cg are the concentrations, respectively, 
in layers 3,2,  and 1 as t(or 7) - 03. 

Using eq. (14) the average concentrations in each layer are found to be 

Nm cOs(PmE1) * exp(-P%T) C1=K13Cg+ C 
m = l  Sm 

Consider the case Ci  = K12Ci, C i  = K23C$, which has recently been solved by 
Spencer and Barrie.5 Then the coefficients G, , H, , Mm , and N ,  are simplified 
to 

Substituting these values of G,, etc., into eqs. (19)-(21), and dividing both sides 
of the resulting equations by (Cp - C$), leads to entirely dimensionless expres- 
sions. 

System III: Asymmetric ABC Slabs with Impermeable Substrates 
Attached to Laminas A and C 

The initial conditions are given by eqs. (3). Boundary conditions (5) and (6) 
are retained, but boundary conditions (4) are modified to 

The Laplace transform method gives the solutions 
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where the y m  are the positive roots of an auxiliary equation determined by the 
boundary conditions. The solutions to the diffusion equations are presented 
in Table 111. The h ( y m ) ,  etc., are defined by eqs. (10)-(13) with am replaced 
by Y m .  

In eqs. (26)-(28) the terms on the right hand sides of the equations outside 
the summation signs represent the concentrations, respectively, in layers 3,2, 
and 1 as t(or 7 )  - a. 

Using eq. (14) the average concentrations in each layer are found to be 

NUMERICAL EXAMPLES OF DIFFUSION IN TERNARY 
LAMINATE SLABS 

The main use for the solutions presented in this paper is in predicting con- 
centration profiles in ternary laminate slabs, knowing values of 6 and K. 

One case which requires knowledge of transient diffusion in multilaminate 
slabs is that of power cables without metallic sheaths. The diffusant of interest 
frequently is water, but transfer of plasticizers may also be of concern. Cable 
geometry is, of course, essentially cylindrical, but there are several reasons for 
using a plane slab as an approximation. 

First, in many high-voltage power cables the thicknesses of the polymeric layers 
are small in relation to the radius of the conductor. When this is so the series 
solutions for cylindrical coordinates converge very slowly. 

Secondly, solutions for annuli are very complicated. The binary laminate 
annulus yields solutions6 which are equivalent in complexity to those for the 
ternary laminate slab. Solutions for the ternary laminate annulus are so com- 
plicated as to be of little practical use. 

Thirdly, diffusion data and the assumptions, e.g., the constancy of diffusion 
coefficients and the applicability of Henry’s law, are rarely accurate, so that the 
plane slab approximation to the annulus is acceptable, if the objective is simply 
to obtain an order-of-magnitude estimate of concentration at  a particular 
time. 

We will now consider three particular instances in which water is the diffusant. 
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TABLE IV 
Values of D ,  C, and 1 used in Examples (7' = 25OC) 

Layer D,,(cm2/s) Ci(g/cm3) Length(cm) 

1 5.2 x 10-9 9.2 x 10-5 11 = 0.5 
2 8.4 x 10-9 2 x 1 0 - 3  12 - 11 = 0.3 
3 3.5 x 10-8 2 x 10-3 13 - 12 = 0.3 

The composite slab comprises an outer plasticized poly(viny1 chloride) (PVC) 
sheath (layer 3), an intermediate layer based on unvulcanized butyl rubber (layer 
2) and a low-density polyethylene insulation (layer 1). The PVC sheath is 
contacted with a semi-infinite bath of pure water. The data used for the fol- 
lowing examples are presented in Table IV. Diffusion coefficients and saturation 
concentrations for PVC and unvulcanized butyl rubber were determined ex- 
perimentally by the author. Literature values for the diffusion coefficient of 
water in low-density polyethylene vary enormously. A low diffusion coefficient 
was deliberately selected as representing the most optimistic value, water being 
considered detrimental to the electrical integrity of the insulation. It should 
be realised, however, that the main purpose of the exercise is to demonstrate the 
applicability of the diffusion equation solutions. 

Example 1 

For the first example we will consider System I1 with all three laminas initially 
free of diffusant. In addition C i  = Ci  = C6 = 0 and Cg = CS,, where the super- 
script s denotes saturation with diffusant. This is a specific case of a more 
general solution obtained by Spencer and Barrie.5 

With the above-mentioned restrictions, application of eqs. (19)-(21) and Table 
I1 gives 

(34) 

with the Pm being the nonzero positive roots of the auxiliary equation presented 
in Table 11. It will be seen that the above equations are entirely dimensionless. 
Similar solutions in nondimensionless form were obtained by Le Poidevin? 

Using the data of Table IV the first four roots of the auxiliary equation were 
found to be = 1.528, P2 = 2.660, P3 = 4.718 and P4 = 6.715. With this infor- 
mation the concentration profile at  3000 h was computed and the result is shown 
in Figure 2. 

-- C1- CS, m cos(Pm[1).* exp(-Pm2T) 
S m  

- c  cs, m = l  
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Fig. 2. Concentration profiles at 3000 h for examples 1 ,2 ,  and 3. 

Example 2 

For the second example we will consider System I1 with laminas 2 and 3 ini- 
tially free of diffusant, but lamina 1 saturated with diffusant. This situation 
sometimes arises in power cables when the extruded polyethylene insulation is 
crosslinked, and is saturated (or supersaturated) with water either from the steam 
heat transfer medium or as the result of the decomposition of the chemical 
crosslinking agent. We will assume that the insulation is crosslinked in an inert 
gas heat transfer medium, and that the resultant extrudate has the same diffusion 
properties as uncrosslinked low-density polyethylene and is initially saturated 
with water. 

We use eqs. (19)-(21) and Table 11, together with the restrictions C$ = Cfr = 
0, C', = Cs, and Cg = C;, to obtain 



Fig. 3. Concentration profiles at various times for example 2. 

The concentration profile at  3000 h is shown in Figure 2 and may be compared 
with those of examples 1 and 3. Figure 3 shows the concentration profiles for 
example 2 a t  various times. As might be expected a t  low times there is a mini- 
mum in the concentration. This minimum moves towards x = 0 (the boundary 
with the impermeable substrate) as time goes by. Between 3000 h and 6000 h 
the minimum reaches x = 0, and remains at  x = 0 thereafter. This is sensible 
because, as mentioned earlier, this laminate slab can be considered as one half 
of a symmetrical ABCBA slab which separates two semi-infinite baths, each bath 
having in it the same concentration of diffusant, in these examples both baths 
containing liquid water. 
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Example 3 

We will now consider an example of System I. In the context of water diffusion 
in a power cable this situation could arise if thezconductor is stranded, thus 
permitting the movement of liquid water along the conductor and consequently 
diffusion into the laminate from the insulation side as well as from outside the 
sheath. 

Let us consider the restrictions Ci = Ci = 0, Ci = CS,, C,” = C,:, and Cy = K1:]C!;. 
The last-mentioned restriction applies because the concentration of diffusant 
in the two “baths” is the same. Thus from eqs. (7)-(10) and Table I it can be 
shown that 

with the a, being the nonzero positive roots of the auxiliary equation presented 
in Table I. 

Using the data of Table IV the first four roots of the auxiliary equation were 
found to be a1 = 2.547, a 2  = 3.232, a3 = 6.216, and a4 = 6.798. 

Figure 4 shows the concentration profiles for example 3 at  various times. As 
was the case with example 2 there is a minimum in the concentration at moderate 
times. This minimum moves in the direction of x = 0 as time goes by. The 
minimum, however, never appears a t  x = 0, because the boundary condition 
dCl/dx = 0, a t  x = 0, does not apply in this example. As t (or 7) becomes large 
the minimum approaches its final position within the ternary laminate slab. In 
the particular case of the Table IV data the minimum ends up in layer 1. The 
location of the minimum at  large times is found by setting bCl/dtl = 0 and 
considering only the first term of the infinite series of eq. (40), since second and 
subsequent terms can be neglected. 

Thus 



NON-STEADY-STATE TRANSPORT OF DIFFUSANTS 2915 

n=1 

1 / 
n = 2  

7 
n =3 

0.6 0.8 1.0 1 

x (cm) 

Fig. 4. Concentration profiles at various times for example 3. 

The exponential term is small, but nonzero. Thus to find the position of the 
minimum at large t (or 7) it is necessary to solve the equation 

COS(arl(1) = 0 
for the first nonzero value of (1. Hence we need to find 4 1  from 

a141 = lI2'. (41) 
From eq. (41) it is found that (1 = 0.617 or x = 0.309 cm. As Figure 4 shows, 

the minimum does indeed reach its final resting place at  this position. Note that 
if the first nonzero value of (1 from eq. (41) had been greater than unity, it would 
have implied that the minimum was in layer 2 or 3. It would have been necessary 
to apply the same procedure of truncation, differentiation, and setting to zero 
to C Z  and C3 until either 0 d (2 < 1 or 0 < (3 d 1 had been found. 

Finally, Figure 2 shows the concentration profile at 3000 h for example 3, along 
with examples 1 and 2. This figure provides a useful check for the correctness 
of some of the complicated solutions that have been presented in this paper. For 
instance, it will be seen that the concentration profiles in layers 2 and 3 are vir- 
tually identical for examples 2 and 3, even though the solutions to the diffusion 
equations are very different, as are the set of roots a, and P,, m = 1,2,3,4. The 
reason for the similarity is that the permeability coefficient (defined in general 
as P, = D,CS,) of the layer 1 is much lower than those of layers 2 and 3. Thus 
for moderate times at  least, the concentration profiles in layers 2 and 3 could have 
been obtained with a fairly high degree of accuracy by discarding layer 1 and 
considering an impermeable substrate attached to layer 2 at  x = l1 .  However, 
although layer 1 has very little influence on the concentration profiles in layers 
2 and 3, what happens inside layer 1 is important. 
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APPENDIX: APPLICATION OF THE LAPLACE TRANSFORM 
METHOD 

The Laplace transform method of solving the diffusion (or heat conduction) equations is treated 
in detail by Carslaw and Jaeger.4 However, because the coordinate system used in this paper is novel, 
the derivations of solutions to the diffusion equations are briefly outlined. 

The Laplace transforms of the partial differential equation set (2), subject to the initial conditions 
(3), are 

where p is the variable of the Laplace transform c n ( p )  of Cn(7) .  

System I 

The boundary conditions when transformed become 

Solutions of eq. (Al)  which satisfy eqs. (A2)-(A4) are 
- C! - c', 

3 - -  
P 

where 9 = p1I2. 
The factors At, Bt, E+, and Ft are found from eqs. (A3) and (A4). 

System I1 

Boundary conditions (A3) and (A4) are retained, but condition (A2) is replaced by 

C3 = Cg/p,  $3 = 0; dZFild(1 = 0, $1 = 0 (A5) 

Solutions of eq. (Al)  which satisfy eqs. (A3)-(A5) are 

cg - C $  
c3 = - 

P P 
C2 = Ht cosh[(61~/A1z)q~zI + Mt sinh[(61z/Alz)q$zl + CkIP 

C1 = Nt cosh(q[i) + C i l p  

The factors Gt ,  Ht, M t ,  and Nt are found from eqs. (A3) and (A4). 



NON-STEADY-STATE TRANSPORT OF DIFFUSANTS 2917 

System I11 

Boundary conditions eqs. (A3) and (A4) are retained, but eq. (A5) is replaced by 

dC1 
0, '$3=0; -= 

dC3 
d ~ l  0, E l  = o  -= 

dE3 
Solutions of eqs. (Al)  which satisfy eqs. (A3), (A4), and (A61 are 

C3 = P t  cash [(613/X13)~5:J + C ~ / P  
CZ = Qt cosh [(61dX1dq&] + Ut sinh[(61dX12)~.$2] + C i / p  

C1 = Vt cosh(q(l) + C i / p  

The factors Pt ,  Qt, Ut, and Vt are found from eqs. (A3) and (A4) 
To evalute c1(7), C ~ ( T ) ,  and C3(7) for systems I, I1 and 111, the Inversion theorem is used. All 

systems have simple poles a t  p = 0. The other poles for systems I, 11, and 111, lie, respectively, at  

The author gratefully acknowledges the permission of the Director of Research of the Electricity 
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